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Abstract

The asymptotic lattices and their transformations are studied within the line geometry approach.
It is shown that the discrete asymptotic nets are represented by isotropic congruences in the Plücker
quadric. On the basis of the Lelieuvre-type representation of asymptotic lattices and of the discrete
analog of the Moutard transformation, it is constructed the discrete analog of the W-congruences,
which provide the Darboux–Bäcklund-type transformation of asymptotic lattices. The permutabil-
ity theorems for the discrete Moutard transformation and for the corresponding transformation of
asymptotic lattices are established as well. Moreover, it is proven that the discrete W-congruences
are represented by quadrilateral lattices in the quadric of Plücker. These results generalize to a
discrete level the classical line geometric approach to asymptotic nets and W-congruences, and
incorporate the theory of asymptotic lattices into more general theory of quadrilateral lattices and
their reductions. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The modern theory of integrable partial differential equations is closely related to the
XIX century differential geometry as presented in monographs of Bianchi [2] and Darboux
[8]. In that classical period many geometrys studied “interesting” classes of surfaces. A
remarkable property of these surfaces (or more appropriate: coordinate systems on surfaces
and submanifolds) is that they allow for transformations, which exhibit the so-called per-
mutability property. Such transformations called, depending on the context, the Darboux,
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Bianchi, Bäcklund, Laplace, Moutard, Combescure, Lévy, Ribaucour or fundamental trans-
formations of Jonas, can be also described in terms of certain families of lines called line
congruences [17,19].

To give an example, the angle between the asymptotic directions on the pseudospheri-
cal surfaces in E3, when written as a function of the asymptotic coordinates satisfies the
sine-Gordon equation. From this point of view the study of pseudospherical surfaces is,
roughly speaking, equivalent to studying of the sine-Gordon equation and its solutions. The
transformations of pseudospherical surfaces introduced by Bianchi and Bäcklund, lead to
the celebrated Bäcklund transformations of the sine-Gordon equation.

At the end of XIX century it was also discovered that most of the “interesting” sub-
manifolds are provided by reductions of conjugate nets (see Section 2), and the transfor-
mations between such submanifolds are the corresponding reductions of the fundamental
(or Jonas) transformations of conjugate nets. It is worth of mentioning that from the point
of view of integrable systems the conjugate nets and their iso-conjugate deformations and
transformations are described by the so-called multicomponent Kadomtsev–Petviashvilii
hierarchy [13].

Apparently, asymptotic nets seem not to be directly related to conjugate nets. However,
there exists an approach to asymptotic nets and their transformations (W-congruences)
describing them as conjugate nets within the line geometry of Plücker; see Sections 3 and
4 for more details.

In the soliton theory the discrete integrable systems are considered more fundamental then
the corresponding differential systems [7,34,36]. Discrete equations include the continuous
theory as the result of a limiting procedure, moreover, different limits can give from one
discrete equation various differential ones. Furthermore, discrete equations reveal some
symmetries lost in the continuous limit.

During last few years the connection between geometry and integrability has been ob-
served also at a discrete level. It turns out that the discrete analogs of pseudospherical
surfaces were studied long time ago by Sauer; see [43] and references therein. In con-
nection with the Hirota discrete analog of the sine-Gordon equation [21] these “discrete
pseudospherical surfaces” were investigated by Bobenko and Pinkall [4]. In the book of
Sauer [43] one can find also other examples of discrete surfaces, or better Z2 lattices in
R

3; in particular, he defined discrete asymptotic nets and discrete conjugate nets (consult
also Sections 2 and 5). These definitions, not only have clear geometric meaning, but also
provide the proper, from the point of view of integrability, discretizations of asymptotic and
conjugate nets on surfaces.

The importance of discrete conjugate nets in integrability theory was recognized in [10],
where it was demonstrated that (the discrete analog of) the Laplace sequence of such lattices
provides geometric interpretation of Hirota’s discretization of the two-dimensional Toda
system [22] — one of the most important equations of the soliton theory and its applica-
tions. Soon after that Doliwa and Santini [14] defined and studied the discrete analogs of
multidimensional conjugate nets (multidimensional quadrilateral lattices). They also found
that the corresponding equations were already known in the literature, being obtained by
Bogdanov and Konopelchenko [6] from the ∂̄ approach.
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The Darboux-type transformations of the quadrilateral lattices have been found by Mañas
et al. [37]. The same authors also investigated in detail the geometry of these transformations
[16]; in order to do that the theory of discrete congruences has been constructed as well.

In recent literature one can find various examples of integrable discrete geometries (see,
for example, [11,12,15] and articles in [3]). It turns out that all the known, up to now,
integrable lattices are special cases of asymptotic or quadrilateral lattices. For example,
discrete pseudospherical surfaces investigated by Bobenko and Pinkall [4] and discrete
affine spheres considered by Bobenko and Schief [5] are asymptotic lattices subjected to
additional constraints.

Given a physical system described by integrable partial differential equations, then one
of the first steps towards quantizing the model is to find its discrete version preserving the
integrability properties (see, for example, [29] and references therein). It turns out that often
(see, for example, discussion in [30]) information coming from the quantum model arises
naturally as a result of the solution of the classical discrete integrable equations.

Some recent attempts to quantize the theory of gravity use approach of fluctuating ge-
ometries (see recent reviews [1,24]) based on the concept of discrete manifolds. However,
most of the research in this direction is done by computer simulations, therefore examples
of lattice geometries described by integrable equations may be of some help in developing
this program. Such integrable lattice geometries could be then studied using powerful tools
of the soliton theory, such like the (quantum) inverse spectral transform, algebro-geometric
methods of integration, etc.

The connection of asymptotic nets with stationary axially symmetric solutions of the
Einstein equations [18] is well known in the literature (see, for example, [35]). Recently,
there was discovered by Schief [44] an intriguing link between self-dual Einstein spaces
[41] and discrete affine spheres, which form an integrable subcase of discrete asymptotic
nets. It is therefore reasonable to study integrability of general asymptotic lattices.

The main results of this paper are contained in Theorems 3 and 4, which incorporate
the theory of asymptotic lattices and their transformations into the theory of quadrilateral
lattices. These results are direct analogs of the above-mentioned approach to asymptotic nets
in terms of conjugate nets in Plücker quadric. The direct proof of integrability of asymptotic
lattices, which does not use the theory of quadrilateral lattices, is contained in permutability
Theorems 5 and 6.

More detailed description of results is given below:

• Asymptotic lattices are represented in Plücker quadric by isotropic congruences.
• The asymptotic tangents are represented by focal lattices of such congruences.
• The Darboux–Bäcklund transformations of asymptotic lattices are provided by a discrete

analog of W-congruences.
• Discrete W-congruences can be constructed from the discrete Moutard transformation

via the discrete analog of the Lelieuvre formulas introduced in [27,39].
• The discrete W-congruences are represented in the Plücker quadric by quadrilateral

lattices.
• The discussed transformations of asymptotic lattices satisfy the permutability property.
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To make our exposition self-contained we first recall necessary results of the theory of
conjugate nets and quadrilateral lattices (Section 2) and basic notions of the line geometry
(Section 3). Section 4 is intended to motivate our investigations and contains a brief sum-
mary of the theory of asymptotic nets and W-congruences. In Section 5, we construct the
theory of discrete asymptotic nets within the line geometry of Plücker. Section 6 provides
a detailed exposition of the discrete W-congruences. Finally, in Section 7, we state and
prove the permutability theorems for the Moutard transformation and for the corresponding
W-transformation of asymptotic lattices.

2. Quadrilateral lattices and congruences

In this section, we present basic result from the theory of conjugate nets and congruences
[9,17,31], and their discrete generalizations [10,14,16,43]. We give here only definitions
necessary to understand results of this paper. In particular, we consider only two-dimensional
conjugate nets and lattices.

Definition 1. A coordinate system on a surface in PM is called conjugate net if tan-
gents to any parametric line transported in the second direction form a developable surface
(see Fig. 1).

This geometric characterization can be put into form of the Laplace equation satisfied by
homogeneous coordinates yyy(v1, v2) ∈ RM+1 of the net

∂1∂2yyy = a∂1yyy + b∂2yyy + cyyy, (1)

here v1, v2 are the conjugate parameters, ∂i denotes the partial derivative with respect to vi ,
i = 1, 2, and a(v1, v2), b(v1, v2), c(v1, v2) are functions of the conjugate parameters. Given
conjugate net on a surface, it defines two new conjugate nets called the Laplace transforms of
the old net; the transformations are provided by tangents to the parametric lines (see Fig. 1).

The discrete version of conjugate net on a surface is given by two-dimensional quadri-
lateral lattice (quadrilateral surface).

Fig. 1. Conjugate net.
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Fig. 2. Quadrilateral surface.

Definition 2. By quadrilateral surface, we mean mapping of Z2 in PM , such that its ele-
mentary quadrilaterals are planar (see Fig. 2).

Remark. Notice that tangents to any parametric discrete curve transported in the second
direction form a discrete analog of a developable surface, i.e., one-parameter family of lines
tangent to a (discrete) curve.

This geometric characterization implies linear relation between homogeneous coordi-
nates yyy(m1,m2) ∈ RM+1 of four points of any elementary quadrilateral with vertices yyy,
T1yyy, T2yyy and T1T2yyy, where Ti denotes shift operator along ith direction of the lattice,
i = 1, 2. Such a relation can be put into the form of the discrete Laplace equation:

∆1∆2yyy = a∆1yyy + b∆2yyy + cyyy, (2)

where∆i = Ti −1, i = 1, 2, is the partial difference operator. Intersections of tangent lines
define two new quadrilateral surfaces called the Laplace transforms of the old lattice.

Remark. Restriction from PM to its affine part, and therefore from homogeneous coordi-
nates to non-homogeneous ones, results in putting c = 0 in Eqs. (1) and (2).

The tangents of the lattice are canonical examples of special two-parameter families of
straight lines called discrete congruences.

Definition 3. Z2-parameter family of lines in PM is called two-dimensional discrete con-
gruence if any two neighboring lines are coplanar.

Remark. Two neighboring tangent lines 〈[yyy], Ti[yyy]〉 and T −1
j 〈[yyy], Ti[yyy]〉, i 	= j , of the

quadrilateral surface [yyy(m1,m2)] are coplanar and intersect givingLij the Laplace transform
of the lattice (see Fig. 2).

Definition 4. Intersection points of lines of a discrete congruence with its nearest neighbors
in the ith direction form the ith focal lattice of the congruence.

One can show that focal lattices of two-dimensional congruences are quadrilateral lattices.
The Laplace transformation can be considered as correspondence between focal lattices of
a congruence.

Similar notions and results exist in the continuous context.
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Definition 5. Two-parameter family of lines in PM is called two-dimensional congruence
if through each line pass two developable surfaces consisting of lines of the family.

One can show that the curves of regression of such developables form two focal sur-
faces tangent to the congruence, moreover, the developables cut the focal surfaces along
conjugate nets.

3. Line geometry and the Plücker quadric

The interest of studying families of lines was motivated by the theory of optics, and such
mathematicians like Monge, Malus and Hamilton began to create the general theory of rays.
However, it was Plücker, who first considered straight lines in R3 as primary elements;
he also found a convenient way to parameterize the space of lines [42]. The geometric
interpretation of this parameterization was clarified later by Plücker’s pupil Klein [25] and
was one of the non-trivial examples in his Erlangen program.

We present in this section basic notions and results of the line geometry, details can be
found, for example, in [23,26].

The description of straight lines in R3 takes more symmetric form if we consider R3 as
the affine part of the projective space P3 (by the standard embedding yyy 
→ [(yyy, 1)T]), and
study straight lines in that space. Given two different points [uuu], [vvv] of P3, the line 〈[uuu], [vvv]〉
passing through them can be represented, up to proportionality factor, by a bi-vector

p = uuu ∧ vvv ∈
2∧
(R4), (3)

changing the reference points of the line results in multiplying the bi-vector by the determi-
nant of the transition matrix between their representatives. The space of straight lines in P3

can be therefore identified with a subset of P(
∧2

(R4))  P5; the necessary and sufficient
condition for a non-zero bi-vector p in order to represent a straight line is given by the
homogeneous equation

p ∧ p = 0, (4)

a simple consequence of (3).
If eee1, . . . , eee4 is a basis of R4 then the following bi-vectors:

eeei1i2 = eeei1 ∧ eeei2 , 1 ≤ i1 < i2 ≤ 4

form the corresponding basis of
∧2

(R4):

p = p12eee12 + p13eee13 + · · · + p34eee34.

Eq. (4) rewritten in the Plücker (or Grassmann–Plücker) coordinates pij reads

p12p34 − p13p24 + p14p23 = 0, (5)

and defines in P5 the so-called Plücker (or Plücker–Klein) quadric QP.
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Let us present basic subsets of the quadricQP and corresponding configurations of lines
in P3:

1. If two lines intersect then the corresponding bi-vectors pi , i = 1, 2, satisfy not only
equations of the form (4), but also

p1 ∧ p2 = 0, (6)

i.e., the corresponding points [p1], [p2] of the Plücker quadric are joined by an isotropic
(i.e., contained inQP) line. Therefore isotropic lines of P5 correspond to planar pencils
of lines in P3.

2. A conic section ofQP by a non-isotropic plane represents the so-called regulus, i.e., one
family of lines of a ruled quadric in P3.

4. Asymptotic nets and W-congruences in line geometry

We collect here, for reader’s convenience, various results of the theory of asymptotic
nets [2,17,19,31], which we consider necessary to understand the methods and goals of
next sections where we treat the discrete case.

Definition 6. A coordinate system on a surface in P3 is called asymptotic parameterization
if in each point of the surface the osculating planes of the parametric curves coincide with
the tangent plane to the surface.

Remark. Through the paper, we consider asymptotic parameterization on a surface in the
projective space P3, but we perform calculations in its affine part R3.

Given a surface xxx(u1, u2) in R3 in asymptotic coordinates u1, u2 then

∂2
1xxx = a1∂1xxx + b1∂2xxx, (7)

∂2
2xxx = a2∂1xxx + b2∂2xxx. (8)

As a consequence of the compatibility condition ∂2
1∂

2
2xxx = ∂2

2∂
2
1xxx, we obtain that there exists

a function φ(u1, u2) such that

a1 = ∂1φ, b2 = ∂2φ.

The tangents to the asymptotic lines are represented, in the appropriate gauge, by the
bi-vectors

p1 = e−φ
(
xxx

1

)
∧
(
∂1xxx

0

)
, p2 = e−φ

(
xxx

1

)
∧
(
∂2xxx

0

)
,

notice that the line passing through [p1] and [p2] is an isotropic line.
Eqs. (7) and (8) lead to the linear system

∂1p1 = b1p2, (9)

∂2p2 = a2p1, (10)
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and, in consequence, to the Laplace equations

∂1∂2p1 = ∂2(log b1)∂1p1 + a2b1p1, ∂1∂2p2 = ∂1(log a2)∂2p2 + a2b1p2.

The above results can be expressed as follows.

Theorem 1. A surface in P3 viewed as the envelope of its tangent planes corresponds to a
congruence of isotropic lines of the Plücker quadric QP; the focal nets of the congruence
represent asymptotic directions of the surface.

Let us equip R3 with the scalar product and consider the corresponding cross-product
(×). One can show that any asymptotic net xxx(u1, u2) in R3 can be considered as a solution
of the linear system

∂1xxx = ∂1NNN ×NNN, (11)

∂2xxx = NNN × ∂2NNN, (12)

whereNNN(u1, u2) is orthogonal to the surface and satisfies equation

∂1∂2NNN = qNNN (13)

with a function q(u1, u2). Eq. (13) was first studied by Moutard [38], and Eqs. (11) and
(12) connecting solutions of the Moutard equation with asymptotic nets are known as the
Lelieuvre formulas [32].

Remark. It should be mentioned that the Lelieuvre formulas can be settled down within
the pure affine (even projective) geometry without referring to additional structures in the
ambient space [27].

One can show thatNNN satisfies, in addition to the Moutard equation, the following linear
equations:

∂2
1NNN = (∂1φ)∂1NNN − b1∂2NNN + d1NNN, ∂2

2NNN = −a2∂1NNN + (∂2φ)∂2NNN + d2NNN,

where

d1 = ∂2b1 + b1∂2φ, d2 = ∂1a2 + a2∂1φ,

moreover,

q = ∂1∂2φ + b1a2.

Given scalar solution θ(u1, u2) of the Moutard equations (13), consider the linear system

∂1(θN̂NN) = (∂1θ)NNN − θ∂1NNN, (14)

∂2(θN̂NN) = −(∂2θ)NNN + θ∂2NNN, (15)
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compatible due to (13). Cross-differentiation of Eqs. (14) and (15) shows that N̂NN(u1, u2)

satisfies another Moutard equation

∂1∂2N̂NN = q̂N̂NN (16)

with the proportionality function q̂(u1, u2) given by

q̂ = ∂1∂2θ̂

θ̂
, θ̂ = 1

θ
.

The transition from NNN to N̂NN relating solutions of two Moutard equations (13) and (16) is
called the Moutard transformation [38].

Simple calculation shows that the surface

x̂xx = xxx + N̂NN ×NNN, (17)

can be obtained from N̂NN via the Lelieuvre formulas. Notice that the straight lines 〈xxx, x̂xx〉 are
tangent to both surfaces in corresponding points, i.e., the lines form the so-called Weingarten
(or W for short) congruence.

Definition 7. Two-parameter family of straight lines in P3 tangent to two surfaces in such a
way that asymptotic coordinate lines on both surfaces correspond is called W-congruence.
There exists another way to find W-congruences tangent to a given asymptotic netxxx. Because
θN̂NN ×NNN is tangent to xxx therefore it can be decomposed as

θN̂NN ×NNN = A∂1xxx + B∂2xxx,

the coefficients A(u1, u2) and B(u1, u2) of the above decomposition define, together with
xxx(u1, u2), the W-congruence. It can be shown that the coefficients satisfy the linear system

∂2A = −a2B, (18)

∂1B = −b1A. (19)

Finally, we consider W-congruences in the spirit of Plücker geometry. The bi-vector

q ∝
(
xxx

1

)
∧
(
x̂xx

1

)

represents W-congruence. The bi-vector q in the gauge

q = θ e−φ
(
xxx

1

)
∧
(
N̂NN ×NNN

0

)
= Ap1 + Bp2,

satisfies, due to linear systems (9) and (10) and (18) and (19), the Laplace equation

∂1∂2q = (∂2logB)∂1q+ (∂1logA)∂2q+ [a2b1 − (∂1logA)(∂2logB)]q.

Theorem 2. W-congruences are represented by conjugate nets in the Plücker quadricQP.
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Fig. 3. Asymptotic lattice.

5. Discrete asymptotic nets

Definition 8 (Sauer [43]). An asymptotic lattice is a mapping xxx : Z2 → R
3 such that any

point xxx of the lattice is coplanar with its four nearest neighbors T1xxx, T2xxx, T −1
1 xxx and T −1

2 xxx

(see Fig. 3).

The plane in Definition 8 can be called the tangent plane of the asymptotic lattice in the
point xxx.

We can express the asymptotic lattice condition in the form of the linear equations

∆1∆̃1xxx = a1∆1xxx + b1∆2xxx, (20)

∆2∆̃2xxx = a2∆1xxx + b2∆2xxx, (21)

where ∆̃i = 1 − T −1
i , i = 1, 2, is the backward partial difference operator. Eqs. (20) and

(21) can be rewritten using the backward tangent vectors as

∆1∆̃1xxx = ã1∆̃1xxx + b̃1∆̃2xxx, (22)

∆2∆̃2xxx = ã2∆̃1xxx + b̃2∆̃2xxx, (23)

here the backward and forward data of the asymptotic lattice are related by the following
formulas:

ã1 = 1 − b2

D
− 1, ã2 = a2

D
, b̃1 = b1

D
, b̃2 = 1 − a1

D
− 1

with

D = (1 − a1)(1 − b2)− a2b1 = ((1 + ã1)(1 + b̃2)− ã2b̃1)
−1.

The compatibility condition of the linear system (20) and (21) leads, among others, to

T −1
2 (1 − a1)T2(1 + ã1) = T −1

1 (1 − b2)T1(1 + b̃2). (24)
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The backward asymptotic tangent lines can be represented in the line geometry by the
bi-vectors

p̃i =
(
xxx

1

)
∧
(
∆̃ixxx

0

)
, i = 1, 2.

Using Eqs. (22) and (23) it can be easily shown that

T1p̃1 = (ã1 + 1)p̃1 + b̃1p̃2, (25)

T2p̃2 = ã2p̃1 + (b̃2 + 1)p̃2. (26)

Applying to Eq. (25) the shift operator T2 and using formulas (25) and (26) yields an
equivalent form of the discrete Laplace equation

T1T2p̃1 = (T2ã1 + 1)T2p̃1 + T2b̃1

b̃1
(b̃2 + 1)T1p̃1 − T2b̃1

b̃1D
p̃1,

similarly, we get

T1T2p̃2 = (T1b̃2 + 1)T1p̃2 + T1ã2

ã2
(ã1 + 1)T2p̃2 − T1ã2

ã2D
p̃2.

Notice that the lines 〈p̃1, p̃2〉 are generators of the Plücker quadric (both asymptotic tangents
intersect in xxx) and represent pairs (xxx, π), where π is the tangent plane of the asymptotic
lattice at the point xxx. Two neighboring tangent planes π and T −1

i π , i = 1, 2, intersect along
the backward tangent line represented by p̃i (see Fig. 4). We have thus proved the following
result.

Theorem 3. A discrete asymptotic net in P3 viewed as the envelope of its tangent planes
corresponds to a congruence of isotropic lines of the Plücker quadricQP; the focal lattices
of the congruence represent asymptotic directions of the lattice.

Corollary 1. The lattices inQP which represent two families of asymptotic tangents of an
asymptotic lattice are Laplace transforms of each other.

Fig. 4. Asymptotic directions as focal lattices of the isotropic congruence.
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Similarly, like in the continuous case there exist the discrete analog of the Lelieuvre
representation and the discrete analog of the Moutard equation; for details, see [27,39]. It
can be shown that

∆1xxx = ∆1NNN ×NNN, (27)

∆2xxx = NNN ×∆2NNN, (28)

where the vector NNN , orthogonal to the tangent plane of the lattice, satisfies the discrete
Moutard equation (see also [40])

T1T2NNN +NNN = Q(T1NNN + T2NNN),

whose equivalent form is

∆1∆2NNN = (Q− 1)(∆1NNN +∆2NNN + 2NNN). (29)

We would like to add some new ingredients to the connection of the Lelieuvre representation
of the asymptotic lattices and the linear system (20) and (21). The normal vector satisfies
equations

∆1∆̃1NNN = a1∆1NNN − b1∆2NNN + d1NNN, (30)

∆2∆̃2NNN = −a2∆1NNN + b2∆2NNN + d2NNN. (31)

The compatibility condition of the system (30) and (31) with the Moutard equation (29)
give

(1 − b2)T1(1 + b̃2) = Q(T −1
2 Q), (32)

(1 − a1)T2(1 + ã1) = Q(T −1
1 Q). (33)

Combining Eqs. (32) and (33) with (24) yields the following identity:

T1T2ã1 + 1

(T1Q)(T2D)(T2ã1 + 1)
= T1T2b̃2 + 1

(T2Q)(T1D)(T1b̃2 + 1)
= F, (34)

which will be used in the next section.

6. Discrete W-congruences

Similarly, like in the continuous case, given solution Θ(n1, n2) of the discrete Moutard
equation (29), one can define the (discrete analog of the) Moutard transformation [39] (see
also [40]) by solving the linear system

∆1(ΘN̂NN) = (∆1Θ)NNN −Θ∆1NNN, (35)

∆2(ΘN̂NN) = −(∆2Θ)NNN +Θ∆2NNN, (36)
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which yields

T1T2N̂NN + N̂NN = Q̂(T1N̂NN + T2N̂NN)

with new proportionality factor

Q̂ = T1T2Θ̂ + Θ̂

T1Θ̂ + T2Θ̂
, Θ̂ = 1

Θ
.

Let us define the following lattice:

x̂xx = xxx + N̂NN ×NNN, (37)

a simple calculation shows that formula (37) gives new asymptotic lattice with the normal
vector N̂NN entering into the Lelieuvre formulas.

The line 〈xxx, x̂xx〉 is tangent to both lattices, therefore, we have

ΘN̂NN ×NNN = A∆1xxx + B∆2xxx = Ã∆̃1xxx + B̃∆̃2xxx, (38)

where

Ã = A(ã1 + 1)+ Bã2, (39)

B̃ = Ab̃1 + B(b̃2 + 1). (40)

Notice that the two-parameter family of lines 〈xxx, x̂xx〉 has analogous properties of that of the
W-congruence from continuous case.

Definition 9. By a discrete W-congruence, we mean two-parameter family of straight lines
connecting two asymptotic lattices in such a way that the lines are tangent to the lattices in
corresponding points.

We have shown how the get discrete W-congruences from the Moutard transformations.
It turns out that any discrete W-congruence can be obtained in this way.

Proposition 1. Given discrete W-congruence connecting xxx and x̂xx, then the normal vectors
NNN and N̂NN which define xxx and x̂xx via the Lelieuvre formulas, are related by a Moutard
transformation.

Proof. From Definition 9 it follows that x̂xx must be of the form

x̂xx = xxx + ψN̂NN ×NNN. (41)
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We first show that without loss of generality one can put the proportionality function
ψ(n1, n2) equal to 1. Applying the partial difference operator ∆1 to Eq. (41) and using
the first part (27) of the discrete Lelieuvre formulas, we get

T1N̂NN ×NNN = T1NNN ×NNN + (T1ψ)T1N̂NN × T1NNN − ψN̂NN ×NNN. (42)

The scalar products with T1N̂NN and withNNN give

(T1NNN ×NNN) · T1N̂NN = ψ(N̂NN ×NNN) · T1N̂NN, (T1N̂NN × N̂NN) ·NNN = T1ψ(T1NNN ×NNN) ·NNN,

which after simple manipulation gives

(T1ψ)ψ = 1, (43)

similarly, we have

(T2ψ)ψ = 1. (44)

Notice that due to Eqs. (43) and (44) the normal vector N̂NN
′ = ψN̂NN defines the same lattice

x̂xx, which shows that in formula (41), we can put ψ ≡ 1.
After such a change, formula (42) can be rewritten in the form

(T1NNN − N̂NN)× (NNN − T1N̂NN) = 0,

which yields

T1NNN − N̂NN = λ(NNN − T1N̂NN). (45)

Similarly, we obtain

T2NNN + N̂NN = µ(NNN + T2N̂NN). (46)

Formulas (45) and (46) give together with the Moutard equations satisfied byNNN and N̂NN , the
following equations:

λQ = (T2λ)Q̂, µQ = (T1µ)Q̂,

µQ− 1 = (T2λ)(µ− Q̂), λQ− 1 = (T1µ)(λ− Q̂).

This gives

(T2λ)µ = (T1µ)λ,

which implies that

λ = T1Θ

Θ
, µ = T2Θ

Θ
, (47)

moreover, Θ satisfies the Moutard equation ofNNN . Finally, Eqs. (45) and (46) with λ and µ
given by (47) can be put in the form of the Moutard transformation (35) and (36). �
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Eq. (38) imply

ΘN̂NN = Ã∆̃1NNN − B̃∆̃2NNN + C̃NNN. (48)

The compatibility condition of Eq. (48) and the Moutard transformation (35) and (36) gives,
among others,

T1

(
B̃

b̃2 + 1

)
= B

Q
, (49)

T2

(
Ã

ã1 + 1

)
= A

Q
. (50)

The following result is the generalization of Theorem 2 to the discrete case.

Theorem 4. Discrete W-congruences are represented by two-dimensional quadrilateral
lattices in the Plücker quadric QP.

Proof. Lines of the W-congruence are represented by bi-vectors

q =
(
xxx

1

)
∧
(
ΘNNN ×NNN

0

)
= Ãp̃1 + B̃p̃2.

We will show that q satisfies the Laplace equation.
Because of (25) and (26), we have

T1q = T1Ã[(ã1 + 1)p̃1 + b̃1p̃2] + (T1B̃)T1p̃2,

T2q = T2B̃[(b̃2 + 1)p̃2 + ã2p̃1] + (T2Ã)T2p̃1,

and therefore

T1T2q = T1T2Ã

T2Ã
T2(ã1 + 1)T2q+ T1T2B̃

T1B̃
T1(b̃2 + 1)T1q+ U p̃1 + V p̃2, (51)

where

U = ã2
T1T2Ã

T2Ã
T2(Ãb̃1 − B̃(ã1 + 1))+ (ã1 + 1)

T1T2B̃

T2B̃
T1(B̃ã2 − Ã(b̃2 + 1)),

V = (b̃2 + 1)
T1T2Ã

T2Ã
T2(Ãb̃1 − B̃(ã1 + 1))+ b̃1

T1T2B̃

T2B̃
T1(B̃ã2 − Ã(b̃2 + 1)).

Using Eqs. (39) and (40), we get

U = −ã2
T1T2Ã

T2Ã
T2

(
B

D

)
− (ã1 + 1)

T1T2B̃

T2B̃
T1

(
A

D

)
,

which, due to Eqs. (49) and (50), can be transformed to

U = −Q(T1A)(T2B)

(
ã2(T1T2ã1 + 1)

A(T1Q)(T2D)(T2ã1 + 1)
+ (ã1 + 1)(T1T2b̃2 + 1)

B(T2Q)(T1D)(T1b̃2 + 1)

)
.
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Identity (34) gives together with Eqs. (39) and (40) that

U = −ÃQF
(T1A)(T2B)

AB
,

similarly,

V = −B̃QF
(T1A)(T2B)

AB
,

which yields

U p̃1 + V p̃2 = −QF
(T1A)(T2B)

AB
q. (52)

Inserting (52) into Eq. (51) leads to conclusion that the bi-vector q satisfies the Laplace
equation. �

From the interpretation of W-congruences as quadrilateral lattices in QP, we infer the
following property (see final remarks of Section 3).

Corollary 2. Four neighboring lines of a W-congruence are generators of a ruled quadric
in P3.

We would like to stress that the discrete W-congruences are not discrete congruences in
the sense of Definition 3. In order to explain this terminological confusion we would like
to make a few historical comments. At the beginning of the line geometry, by a congruence
it was meant any two-parameter family of straight lines in R3. It turns out that in R3 such
family has, in general, two focal surfaces. However, in more dimensional ambient space
two-parameter families of lines do not have, in general, focal surfaces.

From the point of view of transformations of surfaces it was necessary, therefore, to put
some restrictions on the initial definition, and we read in [17, p. 11]: “we call a congruence
in n-space a two-parameter family of lines such that through each line pass two developable
surfaces of the family.” Going further into multiparameter families of lines and into discrete
domain, in order to keep the basic property of congruences they have been defined [16] in
such a way that they have focal lattices; this requirement leads to Definition 3. In continuous
case W-congruences have focal surfaces, but this is, as we mentioned above, typical property
of two-parameter families of lines in R3. In our opinion, this terminological confusion
suggests that it is more convenient to consider discrete W-congruences as quadrilateral
lattices in the line space.

7. Permutability theorems

In this section, we consider superposition of the Moutard transformations and the cor-
responding superpositions of W-transformations of asymptotic lattices. We prove also the
permutability theorems for both transformations.
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Let Θ1(n1, n2) and Θ2(n1, n2) be two solutions of the Moutard equation of the lattice
NNN(n1, n2), i.e.,

T1T2


 NNN

Θ1

Θ2


+


 NNN

Θ1

Θ2


 = Q


T1


 NNN

Θ1

Θ2


+ T2


 NNN

Θ1

Θ2




 . (53)

We use Θ1 to define the first Moutard transformation NNN1 of the lattice NNN and the corre-
sponding transformation Θ2

1 of Θ2 via Eqs. (35) and (36):

∆1

[
Θ1

(
NNN1

Θ2
1

)]
= (∆1Θ

1)

(
NNN

Θ2

)
−Θ1∆1

(
NNN

Θ2

)
, (54)

∆2

[
Θ1

(
NNN1

Θ2
1

)]
= −(∆2Θ

1)

(
NNN

Θ2

)
+Θ1∆2

(
NNN

Θ2

)
, (55)

which implies that bothNNN1 and Θ2
1 satisfy the same Moutard equation

T1T2

(
NNN1

Θ2
1

)
+
(
NNN1

Θ2
1

)
= Q1

[
T1

(
NNN1

Θ2
1

)
+ T2

(
NNN1

Θ2
1

)]
,

where

Q1 = T1T2Θ̂
1 + Θ̂1

T1Θ̂1 + T2Θ̂1
, Θ̂1 = 1

Θ1
.

Similarly, we use Θ2 to define the second Moutard transformationNNN2 of the latticeNNN and
the corresponding transformation Θ1

2 of Θ1:

∆1

[
Θ2

(
NNN2

Θ1
2

)]
= −(∆1Θ

2)

(
NNN

Θ1

)
+Θ2∆1

(
NNN

Θ1

)
, (56)

∆2

[
Θ2

(
NNN2

Θ1
2

)]
= (∆2Θ

2)

(
NNN

Θ1

)
−Θ2∆2

(
NNN

Θ1

)
. (57)

Notice the modification of signs in the transformation formulas, which, however, do not
change the fact that bothNNN2 and Θ1

2 satisfy the same Moutard equation

T1T2

(
NNN2

Θ1
2

)
+
(
NNN2

Θ1
2

)
= Q2

[
T1

(
NNN2

Θ1
2

)
+ T2

(
NNN2

Θ1
2

)]
,

where

Q2 = T1T2Θ̂
2 + Θ̂2

T1Θ̂2 + T2Θ̂2
, Θ̂2 = 1

Θ2
.

Eqs. (54)–(57) imply that both products Θ1Θ2
1 and Θ2Θ1

2 are defined up to additive con-
stants. Moreover, since

∆1(Θ
1Θ2

1 ) = ∆1(Θ
1)Θ2 −Θ1∆1Θ

2 = ∆1(Θ
2Θ1

2 ),

∆2(Θ
1Θ2

1 ) = −∆2(Θ
1)Θ2 +Θ1∆2Θ

2 = ∆2(Θ
2Θ1

2 ),
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then one of these constants can be fixed in such a way that

Θ1Θ2
1 = Θ2Θ1

2 = Ξ12 (58)

holds.
The following result states that there exist lattices being simultaneous Moutard transfor-

mations ofNNN1 andNNN2, what can be illustrated by the diagram

Theorem 5 (Permutability of the Moutard transformations). Let Θ1, Θ2 be solutions of
the discrete Moutard equation of the lattice NNN , and let NNN1, NNN2 be the corresponding two
(discrete) Moutard transformations of NNN . Then the functions Θ1

2 and Θ2
1 , given by Eqs.

(54)–(58), provide by the formula

NNN12 +NNN = Θ1Θ2

Ξ12
(NNN1 +NNN2), (59)

one-parameter family (because of the free integration constant in Ξ12) of the Moutard
transformations of the latticeNNN1 (by means of the function Θ2

1 ) which are simultaneously
the Moutard transformation of the latticeNNN2 (by means of the function Θ1

2 ).

Proof. It is enough to verify directly that the latticeNNN12 = NNN21 given by (59) is a solution
of equations

∆1(Θ
1
2NNN21)=(∆1Θ

1
2 )NNN2 −Θ1

2∆1NNN2, ∆2(Θ
1
2NNN21) = −(∆2Θ

1
2 )NNN2 +Θ1

2∆2NNN2,

which define the Moutard transformations of NNN2 by means of Θ1
2 , and that it is also a

solution of equations

∆1(Θ
2
1NNN12)= − (∆1Θ

2
1 )NNN1 +Θ2

1∆1NNN1, ∆2(Θ
2
1NNN12) = (∆2Θ

2
1 )NNN1−Θ2

1∆2NNN1,

which define the Moutard transformations ofNNN1 by means of Θ2
1 . �

Remark. Notice that the superposition formula (59) itself is of the form of the discrete
Moutard equation. This is a manifestation of the frequently observed relation between
discrete integrable systems and their Darboux-type transformations [4,16,20,28,33,40]. To
obtain such a form of the superposition formula it was the reason of modification of signs
in the Moutard transformation (56) and (57).

The corresponding theorem (the discrete analog of the classical Bianchi permutability
theorem [2,17]) about permutability of the W-transformations of asymptotic lattices reads
as follows.
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Theorem 6 (Permutability of the W-transformations). If xxx and xxx1 are asymptotic lattices
related by a W-congruence and xxx and xxx2 are related by a second W-congruence then there
can be found one-parameter family of asymptotic lattices given in notation of Theorem 5
by

xxx12 = xxx21 = xxx + Θ1Θ2

Ξ12
NNN1 ×NNN2, (60)

such that xxx1 and xxx12 are related by a W-congruence, and likewise xxx2 and xxx12.

Proof. Due to Proposition 1, the lattices xxx1 and xxx2 can be given by

xxx1 = xxx +NNN1 ×NNN, (61)

xxx2 = xxx −NNN2 ×NNN, (62)

where NNN , NNN1 and NNN2 are like in (54)–(57); notice the change of sign in (62) induced by
the change of sign in (56) and (57). Transforming lattice xxx1 by (62) by means of NNN12 and
applying (59) one obtains (60), likewise transforming lattice xxx2 by formula (61) by means
ofNNN12. �

8. Conclusion and remarks

The main result of this paper consists in showing that the theory of asymptotic lattices and
their transformations given by W-congruences forms a part of the theory of quadrilateral lat-
tices. The discrete W-congruences can be considered as quadrilateral lattices in the Plücker
quadric, therefore they provide non-trivial examples of quadrilateral lattices subjected to
quadratic constraints, whose general theory was constructed in [12]. We demonstrated also
the permutability property of the corresponding W-transformations of asymptotic lattices,
thus proving directly their integrability.

Our result is the next step in realization of the general program of classification of
integrable geometries as reductions of quadrilateral lattices. Such reductions come usually
from additional structures in the projective ambient space (the close analogy to the Erlangen
program of Klein), and/or from inner symmetries of the lattice itself (see also examples in
[15]); in our case the basic underlying geometry is the line geometry of Plücker.
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